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Abstract-The present work is a numerical study of heat transfer characteristics from the bottom tip of a 
cylinder spinning about a vertical axis in an infinitely saturated porous medium. The problem is axisym- 
metric. The non-dimensionalized governing equations are solved using the SIMPLER algorithm on a 
staggered grid. The influence of rotational Reynolds numbers and Darcy numbers on the heat transfer for 
a Grashof number of lo4 and Prandtl number of 7.0 is studied. It is found that for very high Darcy numbers, 
over a wide range of rotational Reynolds numbers, the heat transfer takes place mainly due to 
conduction. The convective heat transfer takes place for lower Darcy numbers and for higher rotational 
Reynolds numbers. Moreover, there is a rapid increase in the overall Nusselt number below a certain Darcy 
number with increase in the rotational Reynolds numbers. The effect of the Darcy number and the 
rotational Reynolds number on the heat transfer and fluid flow in the porous medium is depicted in the 
form of streamline and isotherm plots. The variation of the overall Nusselt number with respect to the 
Darcy number for various rotational Reynolds numbers is plotted. The variation of the local Nusselt 
number with respect to the radial coordinate at the heated tip of the vertical cylinder is plotted for various 

Darcy and rotational Reynolds numbers. 

INTRODUCTION 

CONVECTIVE heat transfer in saturated porous media 
has been gaining importance in recent years, both 
in academic and in practical situations. Considerable 
attention has been paid to achieve greater under- 
standing of the transport phenomena in saturated 
porous media subjected to free, forced, and mixed 
convection. The prediction of natural convective heat 
transfer characte~stics from heated bodies embedded 
in a porous medium is of great practical significance, 
especially in geothermy, nuclear waste disposal, heat 
pipe technology, mining, underground gas pipes and 
in the petroleum industry. 

In the recent past, considerable numerical work has 
been reported on natural, as well as forced, convection 
inside a saturated porous medium. Most of the 
reported work is based on the Darcy law of fluid 
flow inside the porous medium, Free convective heat 
transfer about a vertical cylinder has been solved using 
the boundary layer approximation [I]. The surface 
tem~rature of the cylinder is varied as a power func- 
tion of the distance from the leading edge. Thermal 
convection in a saturated porous medium bounded 
by two horizontal cylinders is numerically simulated 
for low Rayleigh numbers [2, 31. The fluid motion 
is assumed to be described by the Darcy-Oberseck- 
Boussinesq equation. An experimental work has also 
been reported for natural convective heat transfer in 
concentric and eccentric horizontal annuli [4] in a 
porous medium. Mixed convection flow inside a satu- 
rated porous medium has been solved by using the 
general transformation [5]. The effect of boundary 

and inertia on flow and heat transfer in a porous 
medium has been studied [6]. 

When permeability of the porous medium is high, 
the Darcy law of fluid flow does not hold good. Many 
workers have used the Darcy equation with Brink- 
mann’s modification [7]. In the present work, natural 
convective heat transfer from the tip of a drilling 
cutter spinning inside a saturated porous medium is 
nume~cally simulated. This is a frequently encoun- 
tered problem in foundation, bore well and oil well 
drilling. Brinkmann’s modified Darcy equation along 
with the continuity and energy equations are solved 
for velocity, pressure and temperature distributions. 
The SIMPLER algorithm [9] is employed to handle 
the velocity-pressure coupling. 

FORMULATION 

The drill shaft is assumed to be a semi-infinite cyl- 
inder, spinning inside an infinitely saturated porous 
medium. The tip of the cylinder is assumed to be at a 
constant temperature. In the drilling process there is 
always a certain gap between the wall of the cylinder 
and the earth, through which water is forced in order 
to minimize friction. As a result, there is a formation 
of a thin layer of fluid. This layer offers resistance 
to heat transfer from the cylinder to the external 
medium. To take this fact into account the circum- 
ference of the cylinder along the length is assumed 
to be insulated. The saturated porous medium is 
assumed to be homogeneous and to have constant 
properties. The fluid and the porous material are 
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NOMENCLATURE 

CI radius of the rod 

.9 acceleration due to gravity 
k effective thermal conductivity of the 

saturated porous medium 
K permeability of the porous 

medium 
P pressure 

: 

radial coordinate 
general non-dimensional source term 

T temperature 

T, temperature at infinity 

T w temperature at the cylinder tip 
AT temperature difference. ( Ttip - T,) 

u radial velocity 

t’ azimuthal velocity 

w axial velocity 

z axial coordinate. 

Greek symbols 
effective thermal diffusivity 
coefficient of cubic thermal expansion 

l- general non-dimensional diffusion 

coefficient 
V effective momentum diffusivity 

density of the fluid 
: general non-dimensional variable 
n angular velocity of the cylinder. 

Non-dimensional parameters 
Da Darcy number, a’/K 

Gr Grashof number, s,!3A Tu ‘/v ’ 

NU Nusselt number, ha/k 

P pressure, pa*/pv* 

Pr Prandtl number, V/LX 
R radial coordinate, r/a 

u radial velocity, uajv 

V azimuthal velocity, vu/v 

vo rotational Reynolds number, a’Q/v 

W axial velocity, wajv 

Z axial coordinate, z/a 

0 non-dimensional temperature, 

(T- T,)/AT. 

assumed to be in local thermodynamic equilibrium. 
Heat is generated due to the friction only at the tip of 
the cylinder. It is assumed that there is no temperature 

gradient inside the cylinder. 
The free convective heat transfer due to the hot 

cylinder tip, the forced convective heat transfer due 
to the rotation of the cylinder, and the resulting mixed 

convective heat transfer due to the interaction of the 
above phenomena are studied numerically. Since the 
present problem is axisymmetric in nature, the equa- 

tions are solved on an axisymmetric (R-Z) plane. The 

computational domain is rectangular as shown in Fig. 
I. The limiting values of r,,,:,,. z,,, and z,,, were chosen 

such that the variables in the interior of the domain 

remained independent of their values [8, IO]. It was 

found that Y,,, = 5a in the radial direction and 

&n,” = -8a and z,,, = 8a in the axial direction sat- 

isfied the above requirements for the range of par- 
ameters investigated. 

Infinity for the present problem is assumed to be 

the point where the velocity component along the 
boundary tends to zero. Hence at the r infinity bound- 
ary the axial component tends to zero, while at the z 

infinity boundaries the radial velocity tends to zero. 
Since only relative values of pressure are of interest in 
incompressible flow problems, and since the pressure 
has to be constant at the far field boundaries, pressure 

is assumed to be zero on these boundaries [8, IO]. 
The boundary conditions for the energy equation are 
based on the flow direction at the boundary. If the 
flow is into the domain, T = T, at the boundary, 
while dT/dn = 0 when the flow is outward, n being 
the coordinate normal at the boundary. 

The governing equations are as follows : 

continuity equation 

I d(w) a(w) 
m~+~=O; 
r 

radial momentum equation 

I d(ruu) C?(UW) 2 I@ vu _Fr_+3;_-_= _~~_~ 
r r par K 

(1) 

rho r=5a 

FIG. 1. Computational domain 
+v[tL(rg)-;+$I: (2) 
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azimuthal momentum equation Table 1. Terms in the general equation 

1 C?(ruv) a(W) uv vu ~__ 
r dr +aZ-T=-z 

Equation CD r, s* 

(1) 1 0.0 0.0 

(2) u 1.0 aP v2 Ii 
-z+R-RZ-PrDalJ 

(3) V 1.0 
-T-$--PrDuV 

+v[iE(r!j$-;+$I; (3) 

axial momentum equation 

1 d(ruw) d(ww) 

r dr 
__ = - ; ; +gj(T- Z-J 

+ dz-~+v[~~[r~j+$]; (4) 

energy equation 

1 a(ruT) + d(wT) 

r dr 
_aI=ct[ki(rg)+$]. (5) 

The boundary conditions for the momentum equa- 
tions and energy equation are as follows : 

aw 
r=O; u = 0, v=o, -=o 

ar 

W) 
r = rmax ; ---0, v=o, w=Q 

ar 

aw 
z=z In!" ; u = 0, u=o, --=o 

aZ 

u = 0, 1) = 0, 
aw 

z = zmar; - = 0 
aZ 

z=O; O<r,<a; u=O, u=rQ w=o 

r=O; 
dT 
z = 0, r = rmax ; T=T,, u<O 

aT 
z = z,in; T=T,, w>O, -=O, w<O 

aZ 

aT 
z=zmax; T=T,, w<O, -=O, w>O 

aZ 

z=O; O<r<a; T=T,,,. 

NUMERICAL PROCEDURE 

The governing equations are non-dimensionalized 
using the radius of the cylinder a as the reference 
length and (Tt,p - T,) as the reference temperature 
difference. The Boussinesq approximation is used on 
the axial momentum equation. The original equations 
(l)-(5) result in the following general conservation 
equation : 

where @ is the 

, a@ 
->] 'aR 

+;[(W@-rag)]=& (6) 

general variable, TQ the diffusion 

(4) w 1.0 
-g+CrO-PrDaW 

(5) @ l/Pr 0.0 
- 

coefficient and S, the source term corresponding to @ 
in the different equations (l)-(5). These are listed in 
Table 1. 

Algebraic equations are obtained by integrating 
the above general equation (6) over the control vol- 
umes on the staggered grid system for the respective 
variables. The discretization procedure proposed by 
Patankar and Spalding [ 1 I] and Patankar [9] has been 
employed. A power law variation of the variables 
has been assumed between the discrete points. The 
pressure and velocity correction and updating for suc- 
cessive iterations used in the present work follow the 
SIMPLER algorithm [9]. The grid size beyond which 
the solutions are grid independent was found to be 
20 x 45. The grid sizes used were non-uniform and the 
smallest grid was O.OOla along the axial direction and 
O.Ola along the radial direction. The grid inde- 
pendence of the solutions was tested by running a 
typical case on a 40 x 73 non-uniform mesh. The 
resulting Nusselt numbers did not vary by more than 
0.1%. The residue obtained from the continuity equa- 
tion at all points was used as the convergence criterion. 
The value of the convergence criterion was 10-j. 

RESULTS AND DISCUSSION 

The present problem is an attempt to numerically 
simulate the drilling process encountered in the pet- 
roleum industries and in civil engineering. The values 
of all the input parameters are realistic [12] and the 
range of these parameters used is shown in Table 
2. The non-dimensional numbers are obtained from 
these sets of values for computation. 

The results are presented in the form of streamline 
and isotherm plots. The present problem is axisym- 
metric, with the presence of a circumferential velocity. 
This means that the streamlines are, strictly speaking, 
three-dimensional. But the envelope of these stream- 
lines forms axisymmetric stream tubes. The term 
‘streamlines’ in this paper denotes the sectional 
lines of these stream tubes and not the actual stream- 
lines. The mean Nusselt numbers are plotted against 
rotational Reynolds numbers for various Darcy 
numbers. The streamlines and isotherms are plotted 
for extreme Darcy and rotational Reynolds numbers. 
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Table 2. Range of parameters 
. ..__ -._.. -... ~~~~ .~_~~ _-.. .__ -..._ ~_~~. _~~~.~ ~~~~~ ~~_~~. 

S. No. Parameters Range Units 
- ..--... .--..- _.-_._ ~_~ ~_~~~ .~_._ __ ..___._..___. 

(1) Radius of the drilling rod ((I) I O-20 cm 
(2) Permeability of the porous medium (K) 0.02-0.0001 cm’ 
(3) Angular velocity of the drill bit (Q) 50-100 rev min- ’ 
(4) Effective thermal diffusivity (G() 10.5 ,()-6 ,I s -1 

The stream function is defined as follows : 

Figures 2 and 3 show the streamline-isotherm plots 
and local Nusselt number plot for a Darcy number 
of lo6 and a rotational Reynolds number Vo = 0, 
respectively. Figures 4 and 5 show the streamline- 
isotherm plots and local Nusselt number plot for a 
Darcy number of lo4 and a rotational Reynolds num- 
ber Vo = 0, respectively. The above set of figures 
shows the significant effect of Darcy numbers on the 
streamlines and isotherms. There is an increase in the 
maximum stream function value. The heat transfer 
takes place mainly due to conduction for high Darcy 
numbers and convection for low Darcy numbers for 
a given Vo. This is because, since the fluid velocity is 
very low for high Darcy numbers, heat gets conducted 
through the saturated porous matrix in all directions. 
In other words, the heat transfer due to natural con- 
vection is negligible. Hence, the isotherms are nearly 
concentric circles in the two-dimensional view. As the 
Darcy number decreases, the fluid tends to move freely 
due to an increase in permeability resulting in an 
increase in heat transfer. 

Figures 6 and 7 are streamline-~sothe~ plots and 
the local Nusselt number plot for a Darcy number of 
lo6 and a rotational Reynolds number Vo = 5000, 
while Figs. 8 and 9 show the streamline-isotherm plots 
and local Nusselt number plot for a Darcy number of 
lo4 and a rotational Reynolds number Vo = 5000. 
respectively. A comparison of Figs. 2 and 8 for a 
Darcy number of lo4 shows that as the rotational 
Reynolds number increases the streamlines tend to 
drift towards the axis of the cylinder. Moreover, there 
is a formation of a small recirculation region below the 
tip of the cylinder. This can be explained as follows. As 
Vo increases so the tangential velocity of the lluid 
below the tip of the cylinder increases. This results in 
movement of the fluid in a radial direction pointing 
away from the axis of the cylinder. In order to make 
up for the depletion of the fluid at this region the fluid 
from below gets sucked towards this region. Hence, 
the streamlines get clustered near the tip of the cylin- 
der, thus giving rise to a small region of recirculation. 
This phenomenon is more predominant for low Darcy 
numbers than for high Darcy numbers (see Fig. 6). 
There is a significant drop in the local Nusselt number 
along the radial direction, as shown in Fig. 9. This is 
due to the fact that the recirculation zone increases 

the resistance to heat transfer and hence there is a 
drop in the local Nusselt number at the tip. 

A correlation of average Nusselt number, with 
respect to the Darcy number of the porous medium, 
and the rotational Reynolds number of the cylinder 
is obtained by using a least square fit on 156 data 
points for a Grashof number of lo4 and a Prandtl 
number of 7.0. It was found to be of the form 

Nu= a+(b+cVo++do2)e-“‘” 

where a = 3.75358, b = 2.01, c = 0.2516 x 10--4, 
d=O.O0155,andf= I.IxIO-~. 

The correlation shows that the average Nusselt 
number is a parabolic function of the rotational Reyn- 
olds number Yo and a decaying exponential function 
of the Darcy number Da. As a result, for a very large 
number, the correlation loses the dependence of V’o 
and Da. Hence we get a constant value of the Nusselt 
number which is nothing but the conduction limit. On 
the other hand, for a very low Darcy number, the 
average Nusselt number becomes a function of Vo 
only. This becomes the case of a cylinder spinning in 
a pure fluid medium. Thus the proposed correlation 
can handle extreme cases. The conduction limit was 
validated against the ANSYS package. It was found 
that the Nusselt numbers predicted by the proposed 
correlation, and computed by using ANSYS, differ by 
1.5%. However, for the pure convection limit, the 
authors know of no existing correlation of Nusselt 
number for validation. The fitted value of the Nusselt 
number using this correlation is found to be within 
10% error of the computed value. Figure 10 shows 
the mean Nusselt number variation with respect to 
rotational Reynolds number for various Darcy 
numbers. 

CONCLUSION 

The heat transfer characteristics from the tip of 
a cylinder spinning about its vertical axis inside a 
saturated porous medium is studied numerically. The 
results show that the Nusselt number is a decaying 
exponential function of the Darcy number and a para- 
bolic function of the rotational Reynolds number. 
Moreover, there is a significant increase in the mean 
Nusselt number below a certain Darcy number for a 
given Yo. The heat transfer takes place mainly due to 
conduction for low rotational speeds and convection 
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ISOTHERM PLOT STREAMLINE PLOT 

f / 

FIG. 2. Streamline and isotherm plot for Gr = lo“, Da = 10” and Vo = 0. 

FIG. 3. Nusselt number plot for Gr = lo“, Da = IO5 and 
vo = 0. 
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Valuea ‘duo - 
1.340-l 0.1 

2.67~1 0.2 

4.011-I 0.5 

5.3k-1 0.4 

6.87~1 0.5 

&Ole-1 0.6 

0.54a-1 0.7 

1.068 0.8 

1.202 0.9 

1.335 1.0 
- 

G. 4. Streamline and isotherm plot for Gr = IO’, Da = lo4 and Vo = 0. 

FIG. 5. Nusselt number plot for Gr = 104, Da = lo4 and 
v0 = 0. 
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6. B.bta-3 0.6 

f. see- 3 0.7 

8. I.flw-2 0.6 

9. 1.29c-2 0.9 

10. 1.431~2 1.0 
- 

FIG. 6. Streamline and isotherm for Gr = I@, Da = lo6 and Vo = 5000. 
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FIG. 7. Nusselt number plot for Gr = 104, Da = lo6 and 
vo = 5000. 
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FIG. 8. Streamline and isotherm plot for Gr = lo“, Da = lo4 and Vo = 5000. 

FIG. 9. Nusselt number plot for Gr = lo“, Da = lo4 and 
vo = 5000. 



Heat transfer from the bottom tip of a cylinder 831 

a saturated porous medium bounded by two horizontal 
eccentric cylinders, J. Heat Transfer 106, 167 (1984). 

3. P. J. Burns and C. L. Tien, Natural convection in porous 
media bounded by concentric spheres and horizontal 
cylinders, ht. J. Heat Mass Transfer 22,929 (1979). 

4. T. H. Kuehn and R. J. Goldstein, An experimental study 
of natural convection heat transfer in concentric and 
eccentric horizontal cylindrical annuli, J. Heat Transfer 
100,635 (1978). 

5. A. Nakayama and H. Koyama, A general similarity 
transformation for combined free and forced convection 

0 flows within a fluid saturated porous medium. J. Heat 
0 1000 2000 3000 4000 5000 6000 7000 Transfer 109, 1042 (1987). 

Rotational Reynolds Number Vo 

FIG. 10. Correlation for mean Nusselt number. 

6. K. Vafai and C. L.‘Tien, Boundary and inertia effects 
on flows and heat transfer in porous media, Int. J. Heat 
Muss Transfer 24, 195 (198 1). 

7. V. Prasad and G. Lauriat, Natural convection in a ver- 
tical porous cavity: a numerical study for Brinkmann 
extended Darcy formulation, J. Heat Transfer 109, 688 
(1987). 

8. M. R. Ravi, M.E. Thesis, Indian Institute of Science, 

takes over at high rotational speeds for a given Darcy 

number. 

Bangalore (1988). 

Acknowledgement-The ANSYS package is the registered 9. S. V. Patankar, Numerical Heat Transfer and Fluid Flow. 

trademark of Swanson Analysis System, Inc. Hemisphere, New York (1980). 
10. M. R. Ravi and A. G. Marathe, Int. Heat Transfer Conf. 

IHTC-9, Jerusalem, Israel, Vol. 2, p. 129 (1996). 

REFERENCES 
11. S. V. Patankar and D. B. Spalding, A calculation pro- 

cedure for heat, mass and momentum transfer in 3-d 
I. W. J. Minkowycz and P. Cheng, Free convection about parabolic flows, Int. J. Heut Mass Transfer 15, 1777 

a vertical cylinder embedded in a porous medium, J. (1972). 
Heat Transfer 19, 805 (1979). 12. M. Carter, Geotechnical Engineering Handbook. Pentech 

2. H. H. Bau. Low Rayleigh number thermal convection in Press, London (1980). 

TRANSFERT CONVECTIF A LA BASE DUN CYLINDRE PIVOTANT AUTOUR DUN 
AXE VERTICAL DANS UN MILIEU POREUX SATURE 

Rbumtin etudie numtriquement le transfert thermique a la base d’un cylindre pivotant autour d’un 
axe vertical dans un milieu sature poreux. Le probltme est axisymetrique. Les equations sans dimension 
sont resolues avec l’algorithme SIMPLER sur une grille Ctagee. L’influence des nombres de Reynolds 
rotationnel et de Darcy sur le transfert thermique est Btudite pour un nombre de Grashof de lo4 et un 
nombre de Prandtl de 7. On trouve que pour des nombres de Darcy tres ileves, le transfert est principalement 
de conduction pour un large domaine de nombre de Rayleigh rotationnel. Le transfert convectif prend 
place aux faibles nombres de Darcy et pour les nombres de Reynolds rotationnel les plus tlevb. Neanmoins, 
il y a un accroissement rapide du nombre de Nusselt global au dessous dun certain nombre de Darcy avec 
I’accroissement du nombre de Reynolds rotationnel. L’effet du nombre de Darcy et du nombre de Reynolds 
rotationnel sur le transfert thermique et l’ecoulement dans le milieu poreux est d&it par des cartes 
d’isothermes et de lignes de courant. On trace la variation du nombre de Nusselt global relativement au 
nombre de Darcy pour plusieurs nombres de Reynolds rotationnels. On donne la variation du nombre de 
Nusselt local, pour la coordonnee radiale de l’extrimite chauffee du cylindre vertical, pour plusieurs 

nombres de Darcy et de Reynolds rotationnel. 

KONVEKTIVER WARMEUBERGANG AM BODEN EINES UM SEINE VERTIKALE 
ACHSE IN EINEM GESATTIGTEN PORi)SEN MEDIUM ROTIERENDEN 

ZYLINDERS 

Zusammenfassung-Es wird der Wlrmeiibergang an der Unterseite eines Zylinders numerisch untersucht. 
Der Zylinder rotiert urn seine vertikale Achse und befindet sich in einem unendlich ausgedehnten, gesattigten 
poriisen Medium. Das Problem ist achsensymmetrisch. Die Erhaltungsgleichungen werden dimensionlos 
gemacht und mit Hilfe des SIMPLER-Algorithmus mit einem gestuften Gitternetz gel&t. Es wird der 
EinfluD der Rotations-Reynolds-Zahl und der Darcy-Zahl auf den Wlrmeiibergang fur eine Grashof-Zahl 
von lo4 und eine Prandtl-Zahl von 7,0 untersucht. Fur sehr groDe Darcy-Zahlen zeigt sich in einem weiten 
Bereich der Rotations-Reynolds-Zahl, dal3 der Wlrmetransport hauptsichlich auf Warmeleitung beruht. 
Konvektiver Warmetransport findet bei kleiner Darcy-Zahl und gr6Beren Rotations-Reynolds-Zahlen 
statt. Dariiberhinaus nimmt die Gesamt-Nusselt-Zahl unterhalb einer gewissen Darcy-Zahl mit 
zunehmender Rotations-Reynolds-Zahl rasch zu. Der EinfluB der Darcy- und der Rotations-Reynolds- 
Zahl auf den Warmeiibergang und die Stromung in einem porosen Medium wird in Form von Stromhnien 
undIsothermen gezeigt. Insbesondere wird die Veranderung der Gesamt-Nusselt-Zahl in Abhiingigkeit von 
der Darcy-Zahl fiir verschiedene Rotations-Reynolds-Zahlen dargestellt. AbschlieDend wird der Verlauf 
der iirtlichen Nusselt-Zahl an der bcheizten Oberseite des vertikalen Zylinders in radialer Richtung fiir 

verschiedene Darcy- und Rotations-Reynolds Zahlen gezeigt. 
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KOH3EKT~BHbI~ TEn~O~EPEH~ OT OCHOBAHMR I@iJIWH~PA, BPA~A~~ErOC~ 
BOKPYI” BEPTMKAJlbHO6i OCki B HACbIII[EHHO@ I-lOPkiCTOfi CPEAE 

hHOTPIIIIP_%WIeHHO muxeAymTcr XapaKTepmmiKH TennonepeHoca OT ocHoBaHm winaHnpa, spa- 

iAarouerocK BOK~F BepT3KtKanbHOii OCH B 6ecKoHevHoii iiacbmiemioil IIOpEiCTOii cpeAe.3a,4ava IlBnReTCsl 

ocecwhme~pm~ok. Ee3pa3Mepttble onpenennlowie ypaBHewis peumoTcn c mnonb30BaHHeM amo- 

pHTMa SIMPLER.~~CCJI~~~~TCR BJIHKHHe BpaLWTeJIbHbIX YAcen PetiHOnbACa H 4UCen AapCH Ha Tenno- 

nepeHoc np~ %icAe rpaCro@i, pamoM lo* H acne ~paHXTmI, pae~o~ 7,0. Haiinetio, STO npn OqeHb 

6onbUEiX wcnax jJapcA 8 UI~OKOM n5ianasoHe spaurawnbnarx wren PeiiHonbnca TennonepeHoc 

~~OECXOWT npe~~y~~se~o3ac~eTTennonpo~onHocT~.K0~~e~~~~bIjjinepe~0~Tenna ocywcTen- 

smc% npw 6onee HSBRHX WwIax AapCH H 6onbluux BpawaTenbwbIx WcJIax PeiiHOJIbXCa. KpoMe TOrO, 

npE wwiax fiapcs hfem.ue onpeAenemoro 3Ha'ieHm Ha6moAaeTcn pe3Koe yeenmeme wcna Hycce- 

nbTa c pOCTOM BpatgamubHoro rmna Pezizionbma. BnHnssse wcna AapcH 5s BpautaTenbzioro wcna 

PeiiHonbnca HaTenno~e~Ha;aTe¶eHwe~ocra B nopsicloiicpene ~~py~C~ fpai#WieCKW B 

BWC mm& ToKa n si3oTepw ~-I~HBoA~~TC~ rpa@iKH ~3MeHeH~~ wcna HyCcenbTa B 3aBHcnM~T~ OT 

mcna&apcM npa pamnnabix B~~aTenbH~ sncnax PeitrionbAca.~aloTcn TaKw(e 

K~bHOfO~AH~pa~HpK3n~~HblX~~CAaX~a~~HBpa~aTenbHbIX~~CAaXPeiiHOAbACa. 


